Scroll Down  to

KOI's (Blue)  or
K2 Objects (Green)

Exoplanet-Science.com

TTVs are derived from Q10-Q17 Kepler data.  x-axes: “Observed Tc” (Mid-Transit Time): EXOFAST’s best-fits from Normalized PDCSAP_FLUX Kepler light flux vs. time (BJD_tdb - 2454900) data.  y-axes: “(O – C)”: difference between Observed Tc and the Calculated Tc from the graphically obtained linear ephemeris.

Figure 1.: KOI-3626.01, P = 44.15 days [Plot avg. error bars = ± 0.38 min. (smaller than symbols)]
TTV_minimum: 1043.56 ± 125.54 days, Amp_ttv_minimum: -1.31 ± 0.37 min.
TTV_maximum: 1307.66 ± 140.04 days, Amp_ttv_maximum: 1.24 ± 0.37 min.
P_ttv: 528.20 ± 41.60 days.
Amp_ttv: 2.55 ± 0.52 minutes.
Lomb-Scargle periodogram, candidate P_ttv: 524.81 days; Power: 4.39; FAP: 0.0292.
Linear ephemeris (this work): Tc = [44.14569725 ± 0.00004365](Tc#) + [100.39521529 ± 0.00109367]


Figure 2.: Residuals of Figure 1. [Plot avg. error bars = ± 0.53 min.]

TTV_minimum: 939.66 ± 117.80 days, Amp_ttv_minimum: -0.54 ± 0.28 min.
TTV_maximum: 1087.31 ± 125.28 days, Amp_ttv_maximum: 0.68 ± 0.28 min.
TTV_minimum: 1234.96 ± 133.33 days, Amp_ttv_minimum: -0.54 ± 0.28 min.
TTV_maximum: 1382.61 ± 141.86 days, Amp_ttv_maximum: 0.68 ± 0.28 min.
P_ttv: 295.30 ± 23.01 days.
Amp_ttv: 1.21 ± 0.39 minutes.
Lomb-Scargle periodogram, candidate P_ttv: 298.08 days; Power: 2.67; FAP: 0.406.


Figure 3.: Added combination of Figures 1. and 2. [Plot error bars = ± 0.65 min.]


Numerous literature and major Tc#, Tc, and TTV tabulation references can be found on my "Summary" webpage following the table.

3 Dec 2014
            Kepler KOI-3626 (KIC-12643582) 3(?)-(or more?)-Planet System

TTV Evidence:
The presence of both a credible periodicity in the Lomb-Scargle Periodogram (LSP) and a corresponding pronounced one (P_ttv) in a sinusoidal distribution of [(O-C) vs. Time] ("TTVxy") data points is strongly suggestive of the presence of a second (possibly unseen, non-transiting) gravitationally-perturbing planetary object in a system.

Only data from Q10-Q17 is available for the example of 3626.01.  However, after a sinusoidal curve-fit of the (O-C) vs. Time data showed (Figure 1. below) a periodicity (P_ttv) of 528.20 ± 41.60 days (524.81 days was observed in the Lomb-Scargle Periodogram (LSP) of the same data), a plot (Figure 2.) of the Residuals also gave a good sinusoidal curve-fit with a periodicity of 295.30 ± 23.01 days (LSP: 298.08 days).  The summed combination of these two sinusoidal curves, arrayed in Figure 3., produces a complex overall curvature that is reasonably consistent with the initial data.  While it is certainly possible (see recent work of Lithwick and others) that some of this unusual curvature obtains from eccentric orbits (and maybe even precessing eccentric orbits) of planetary objects in this system, it is also possible that at least 3 planets (with only 3626.01 transiting) in near-circular orbits are mutually-interacting to give the TTV distribution observed.