Scroll Down  to

KOI's (Blue)  or
K2 Objects (Green)

Exoplanet-Science.com

Using the linear equation derived from the 4 known planets [y = 0.2085x - 0.0389; correlation coefficient: 0.9962], the following were determined for
"KOI-94.05":semi-major axis: 0.5376 AU, Period: 127.78 days;
P_"94.05":P_94.03 = 2.35 (or a near mean motion resonance (nmmr) of 7:3).
Using the sinusoidally derived P_ttv [691.50 days], one can also estimate the period from Fabrycky's (ref. below) equation:P_ttv = 1/|(nmmri_a/P_a - nmmri_b/P_b)| as 130.15 days, in reasonable agreement with that estimated by the "L-B Rule" above.

• Bovaird & Lineweaver, 2013, arXiv:1304.3341.
• Fabrycky et al., arXiv-1201.5415; P_ttv = 1/|(nmmri_a/P_a - nmmri_b/P_b)|.

16 July 2014; updated 22 Sep 2014.
KOI-94 (Kepler-89, KIC-6462863) 5-(or more?)-Planet System

TTV Evidence (or lack thereof):
In order of semi-major axis (94.04, 94.02, 94.01, & 94.03):For 94.04, there is no evidence for a TTV (see plot).For 94.02, the presence of both a credible (i.e.: False Alarm Probability (FAP) < 0.1) periodicity in the Lomb-Scargle Periodogram (LSP) of [(O-C) vs. Time] ("TTVxy") data points, along with a sinusoidal distribution of the same points displaying a corresponding periodicity ("P_ttv") (see Figure(s) below), is strongly suggestive of the presence of a gravitationally perturbing planetary object(s) in the system.94.01: In this system, Kepler only recorded two consecutive Quarters before skipping the next two consecutive Quarters; long-cadence (LC) data is only available for Q: 1, 4, 5, 8, 9, 12, 13, 16, & 17; short-cadence (SC) data is only available for Q: 4, 5, 8, 9, 12, 13, 16, & 17.  As a result, uncertainty is too large to assert that 94.01 shows a TTV which, if it were present, might be responsible for the TTV observed for 94.02.For 94.03, although there is again fewer transits than would be optimal, there still appears to be reasonably good evidence for a TTV…potentially due to an as yet unseen non-transiting planetary object.
TTVs are derived from Q0-Q17 Kepler data.  x-axes: “Observed Tc” (Mid-Transit Time): EXOFAST’s best-fits from Normalized PDCSAP_FLUX Kepler light flux vs. time (BJD_tdb - 2454900) data.  y-axes: “(O-C)”: difference between Observed Tc and the Calculated Tc from the graphically obtained linear ephemeris.

Figure: KOI-94.04, SC data, P = 3.74 days [Plot avg. error bars = ± 3.91 min.]
Lomb-Scargle periodogram, no credible periodicities.
Linear ephemeris (this work): Tc = 3.74320611(Tc#) + 64.61270665
Figure: KOI-94.02 LC data, P = 10.42 days [Plot avg. error bars = ± 1.79 min.]
TTV_maximum: 120.23 ± 7.43 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 198.60 ± 7.53 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 276.97 ± 7.68 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 355.33 ± 7.87 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 433.70 ± 8.11 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 512.06 ± 8.38 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 590.43 ± 8.69 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 668.80 ± 9.02 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 747.16 ± 9.39 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 825.53 ± 9.78 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 903.90 ± 10.19 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 982.26 ± 10.63 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 1060.63 ± 11.07 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 1139.00 ± 11.54 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 1217.36 ± 12.01 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 1295.73 ± 12.50 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
TTV_maximum: 1374.10 ± 13.00 days, Amp_ttv_maximum: 6.78 ± 1.20 min.
TTV_minimum: 1452.46 ± 13.51 days, Amp_ttv_minimum: -6.08 ± 1.20 min.
P_ttv: 156.73 ± 1.22 days.
Amp_ttv: 12.86 ± 1.69 minutes.
Lomb-Scargle periodogram, periodicity (P_ttv): 156.82 days; Power: 12.17; FAP: 0.00286.
Linear ephemeris (this work): Tc = 10.42366785(Tc#) + 71.01014911

Figure: KOI-94.02 SC data, P = 10.42 days [Plot avg. error bars = ± 1.41 min.]
TTV_minimum: 356.21 ± 5.54 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
TTV_maximum: 433.76 ± 5.70 days, Amp_ttv_maximum: 5.71 ± 0.61 min.
TTV_minimum: 511.31 ± 5.89 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
TTV_maximum: 588.86 ± 6.10 days, Amp_ttv_maximum: 5.71 ± 0.61 min.
TTV_minimum: 666.41 ± 6.33 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
TTV_maximum: 743.96 ± 6.58 days, Amp_ttv_maximum: 5.71 ± 0.61 min.
TTV_minimum: 821.51 ± 6.85 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
TTV_maximum: 899.06 ± 7.13 days, Amp_ttv_maximum: 5.71 ± 0.61 min.
TTV_minimum: 976.61 ± 7.43 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
TTV_maximum: 1054.15 ± 7.73 days, Amp_ttv_maximum: 5.71 ± 0.61 min.
TTV_minimum: 1131.70 ± 8.05 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
TTV_maximum: 1209.25 ± 8.38 days, Amp_ttv_maximum: 5.71 ± 0.61 min.
TTV_minimum: 1286.80 ± 8.71 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
TTV_maximum: 1364.35 ± 9.06 days, Amp_ttv_maximum: 5.71 ± 0.61 min.
TTV_minimum: 1441.90 ± 9.40 days, Amp_ttv_minimum: -5.49 ± 0.61 min.
P_ttv: 155.10 ± 0.84 days.
Amp_ttv: 11.21 ± 0.86 minutes.
Lomb-Scargle periodogram, periodicity (P_ttv): 155.42 days; Power: 18.85; FAP: 3.446 x 10^-6.
Linear ephemeris (this work): Tc = 10.42366879(Tc#) + 71.01039027

Figure: KOI-94.01, SC, P = 22.34 days [Plot avg. error bars = ± 0.38 min.]
Lomb-Scargle periodogram, no credible periodicities.
Linear ephemeris (this work): Tc = 22.34297280(Tc#) + 65.74259349

Figure: KOI-94.03, LC, P = 54.32 days [Plot avg. error bars = ± 1.12 min.]
TTV_maximum: 186.76 ± 12.97 days, Amp_ttv_maximum: 9.45 ± 1.30 min.
TTV_minimum: 532.51 ± 14.87 days, Amp_ttv_minimum: -9.97 ± 1.30 min.
TTV_maximum: 878.26 ± 18.02 days, Amp_ttv_maximum: 9.45 ± 1.30 min.
TTV_minimum: 1224.00 ± 21.89 days, Amp_ttv_minimum: -9.97 ± 1.30 min.
P_ttv: 691.50 ± 10.08 days.
Amp_ttv: 19.42 ± 1.84 minutes.
Lomb-Scargle periodogram, periodicity (P_ttv): 694.72 days; Power: 3.42; FAP: 7.275 x 10^-5.
Linear ephemeris (this work): Tc = 54.31998963(Tc#) + 94.24132154

Literature Tc#, Tc, and TTV Major Tabulations and Other References: see my "Summary" webpage.
-----------------------------------------------------------------------------------------------------------------------------------------
The Lineweaver-Bovaird Rule ("L-B Rule", ref. below), a recent modification of the Titius-Bode Rule, was used to estimate the semi-major axis and, via Kepler's Third Law, the period for the unseen planetary perturber "94.05".  Bovaird and Lineweaver, using only their "Rule", also proposed the presence of a fifth planet in this system.  The above TTV finding now adds substantial credibility to that proposal.